- 1. Two air-gapped capacitors, $C_{10} = 8 \ \mu F$ and $C_{20} = 4 \ \mu F$ are connected through a switch *S*. Initially *S* is open, the potential drop across C_{10} is $V_{10} = 120V$, and there is no potential drop across C_{20} .
- (a) (5 points) Find initial charges Q_{10} and Q_{20} on C_{10} and C_{20} , respectively;
- (b) (5 points) After S is closed for a long time, find charges Q_1 and Q_2 on C_{10} and C_{20} , respectively;
- (c) (10 points) Now you insert a dielectric material with dielectric constant $\kappa = 2$ to *fill* the air-gap in the second capacitor. Find the potential drop across both capacitors now.

- 2. A potential difference $V_{ab} = 40$ volts is maintained across a system of capacitors in the figure below with $C_1 = 11 \ \mu\text{F}$, $C_2 = 9 \ \mu\text{F}$, and $C_3 = 5 \ \mu\text{F}$.
- (a) (5 points) Find the equivalent capacitance of the network C_{ab} ;
- (b) (10 points) Find charges on all three capacitors.

- 3. In the following circuit, $\varepsilon = +72V$. Let $R_1 = 3\Omega$, $R_2 = 9\Omega$, $R_3 = 24\Omega$, and $R_4 = 16\Omega$.
- (a) (5 points) Find the network resistor R_{ab} ;
- (b) (5 points) Find the power dissipated in the network resistor R_{ab}
- (c) (15 points) Find powers dissipated in each of the four resistors and show that the sum of them adds up to the answer for Part (b).

- 4. In the following circuit,
- (a) (10 points) Find the magnitude and direction of the current through the circuit;
- (b) (5 points) Find the potential difference $V_{ac} = V_a V_c$;
- (c) (5 points) Find the potential difference $V_{bd} = V_b V_d$.

- 5. In the following circuit,
- (a) (15 points) Find the current through all resistors;
- (b) (5 points) Find the potential difference $V_{df} = V_d V_f$.

